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Summary 

The problem addressed is that of the initial profile appropriate for the calculation of the boundary layer on the 
wing at a wing-body junction. The geometry considered is such that the fuselage boundary layer reaches the 
interaction region still attached and it is shown that when the wing has curvature the boundary-layer component 
of velocity normal to the wing is turned inviscidly through a right angle to provide a (in general) non-zero 
profile to initiate the wing calculation. 

1. Introduction 

The simplest problem in the classical theory of comer flows in a laminar incompressible 
fluid at high Reynolds number is that of flow along the line of intersection of two flat 
plates. Carder [1] first considered this geometry by assuming that a single potential 
function satisfies the continuity equation. He employed an extension of the Blasius 
method expecting that far from the comer the solution would be essentially that for a flat 
plate. In subsequent literature this work has been criticized because the transverse 
equations of motion were not taken into account. The basic three-dimensionality of such 
a configuration implies that, due to the interaction of the cross-flows, the flows on the 
two planes are not independent of each other. Not  only are the boundary layers on the 
planes affected by the cross-flows but simultaneously the leading-order inviscid potential 
flow is to be corrected. Rubin [2] reconsidered the problem of flow along such a comer 
emphasising the three-dimensionality and the interaction between four distinct regions of 
flow in the cross-section of interest. He formulated the problem as a singular perturbation 
problem obtaining the proper boundary conditions as a result of asymptotic matching 
similar to that employed by Stewartson [3] in his study of the quarter-infinite plate 

• problem. Explicit results were presented for corrections to the leading-order potential 
flow and to the boundary-layer solutions away from the comer; discussion of the comer 
layer was deferred. Pal and Rubin [4] considered the asymptotic behaviour of the 
corner-layer equations and showed that separate expansions are required to match the 
comer layer to the potential flow and the comer layer to the boundary layers. They also 
demonstrated the algebraic decay of the cross-flow velocities both into the boundary 
layers and the potential flow. Rubin and Grossman [5] dealt with numerical aspects of the 
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solution taking proper account of the asymptotic formulae discussed by Pal and Rubin [4] 
and giving particular attention to the arbitrary constants and logarithmic terms in these 
expansions. Ghia [6] used a modified transformation of the independent variables such 
that all transformed quantities in his numerical study remained bounded. The earlier 
comer-region solutions for the streamwise velocity and the vorticity were reproduced 
though the secondary-flow streamlines had more curvature than those obtained by Rubin 
and Grossman [5]. Limit forms for the solutions were used as far-field boundary 
conditions instead of high-order asymptotic solutions as had been employed by Rubin 
and Grossman. 

In practice, comer flows are greatly influenced by the experimental conditions, the 
shape of the leading edge and the distribution of streamwise pressure gradient. Also, 
theoreticians assume the flow to be stable while the experimental evidence of Zamir [7] 
and El-Carnal and Barclay [8] strongly indicate that this is not so. In a recent review, 
Zamir [9] compares and analySes various theoretical and experimental results and suggests 
that laminar comer flow does not exist with a zero imposed pressure gradient for 
Reynolds numbers much above 104. 

The problem discussed above is essentially that of the three-dimensional adjustment, 
due to viscosity, of the flow along a comer. On each plane a boundary layer of thickness 
O(IR -1/2) develops from the leading edge in each of which the streamwise velocity is 
O(Uoo ) and the normal velocity is O(UooR-1/2). Here R is a Reynolds number based on a 
typical length l and the streamwise external velocity Uoo at upstream infinity. In the 
comer region of O(IR -1/2) by O(IR -1/2) in extent the secondary velocities are again 
O( Uoo R-1/2 ). A rather different type of comer problem has recently been discussed by 
Smith and Duck [10]. They envisage the collision of opposing jets or the turning of a 
thermal boundary layer on encountering a concave comer. The theory is two-dimensional 
and interactive and the authors propose that the oncoming jet or boundary layer' of 
thickness O(IR -1/2) anticipates the presence of the comer and separates at a dist~hace 
O(lR -3/14) upstream of it in an interaction region of length 0(lR-3/7). The boundary 
layer leaves the wall as a free shear layer underneath which there is an eddy of 
recirculating fluid. However, suggestions that this theory is applicable to the colliding 
boundary layers near the equator of a spinning sphere are not supported by the numerical 
investigations of Dennis, Singh and Ingham [11] who find no sign of separation at 
Reynolds numbers up to 100. There is no sign of separation in the experiments either 
(Bowden and Lord [12]). 

Our aim in this work is to shed some light on the problem of wing-fuselage interaction 
in laminar incompressible flow at large Reynolds number. In particular, we wish to 
examine the flow in the neighbourhood of the root chord as this represents an initial line 
for the three-dimensional boundary layer that develops along the length of the wing. It is 
expected that this flow depends crucially on the design of the interaction region. If the 
fuselage extends well ahead of the wing the most likely configuration is that of the 
complex horse-shoe vortex resulting from the separation of the fuselage boundary layer 
before the wing is encountered. This may be laminar in appearance (E1-Gamal and 
Barclay [8]) or dearly turbulent as in the experiments of East and Hoxey [13]. A less 
dramatic possibility for separation of the fuselage boundary layer, but which also cannot 
be ruled out, is that of the turning process of Smith and Duck [10] discussed above. A 
third possibility, and the one that is proposed here, occurs when the design of the 
interaction region is such that the fuselage boundary layer reaches the wing still attached. 
The geometry chosen here has the fuselage given by the half plane z = 0, x >i 0 and the 
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wing by the cylinder y = i f ( x ) ,  with f(0) = 0, so that the fuselage does not extend ahead 
of the wing for an oncoming flow in the x-direction. This geometry itself does not 
necessarily preclude separation but for the example we chose it did not occur. 

The velocity profiles of the fuselage boundary layer when it reaches the wing are of 
fundamental importance for a successful solution for the flow over the complete wing-body 
structure, for they provide, in part, the initial conditions for the next stage of the 
computation, namely the boundary layer on the wing. It is often assumed that, in the limit 
of large Reynolds number, the initial profile for integration along the length of wing is 
zero. We shall see that this assumption is correct when the wing consists of a wedge but is 
incorrect if the cross-section of the wing has curvature. In the former case the wedge, 
which is of course a streamsurface of the inviscid flow, is also a streamsurface of the 
boundary layer on the fuselage. The boundary layer meets the wedge with a zero velocity 
component normal to the wedge and thus the secondary velocities in the corner region are 
O(UooR-1/2). This means that in this situation the corner problem is analogous to that of 
the intersecting flat plates considered by Cartier [1] by Rubin and Grossman [5] and by 
Zamir [9] as discussed above. However, when the wing section is circular, or indeed has 
any curvature, it follows, as noted by Rosenhead [14], that the streamlines of the 
boundary layer cannot be parallel to those of the inviscid flow (of which the wing section 
is one). Thus, unless it separates ahead of the wing, the boundary layer must reach the 
wing with a velocity component normal to it that is nonzero. We show for the particular 
case of a circular cylinder that this is indeed what happens and, in addition, that this 
nonzero profile is turned through a tight angle in an inviscid region that is O(IR -1/2) by 
O(IR -1/2) to provide an initial profile for the incipient wing boundary layer. The 
boundary layer for this wing will be fully three-dimensional, as the wing also presents a 
leading edge to the oncoming flow, and its solution has not been attempted here. 

Calculations for the fully three-dimensional situation in which a vertical cylinder is 
mounted on a horizontal flat plate at a non-zero distance from the leading edge were 
carried out by Sowerby [25] by the method of series expansions. Although the limited 
number of terms available did not make it possible either to predict a horseshoe vortex or 
to extend the calculation as far as the boundary of the cylinder, non-negligible deviation 
of the boundary-layer streamlines from those of the inviscid flow was clearly demon- 
strated. 

The phenomenon that we have described above may be termed a collision in that the 
fuselage boundary layer meets the wing with a nonzero normal velocity. It is, however, 
rather different from other collisions, both steady and unsteady, that have recently been 
the subject of many investigations, in that the calculation does not terminate with a 
singularity. A viscous singularity was encountered by Stewartson and Simpson [15] (see 
also Stewartson, Cebeci and Chang [16]) in their examination of the steady entry flow on 
the line of symmetry on the inside of a curved pipe. The computation comes to an end at 
the position of zero axial skin friction at which point the axial boundary layer leaves the 
wall and the azimuthal boundary layers collide underneath it. A similar singularity occurs 
on the leeside of a cone at incidence (Cebeci, Stewartson and Brown [17]) and at the 
upper pole of a heated sphere in a fluid at rest (Brown and Simpson [18]). Each of these 
three examples differ from that considered here in that they are fluid-fluid collisions, not 
fluid-boundary collisions. Unsteady collision phenomena in which the singularity occurs 
at a finite time in the outer inviscid part of the boundary layer have also recently been 
examined. Examples of these are the collision of opposing boundary layers at the equator 
of an impulsively started spinning sphere (Simpson and Stewartson [19]), at the centre of 



X 

an impulsively started rotating disk in a counter-rotating fluid (Banks and Zaturska [20], 
Stewartson, Simpson and Bodonyi [21]), at the highest generator of an impulsively heated 
cylinder (Simpson and Stewartson [22]), and at the upper pole of an impulsively heated 
sphere (Brown and Simpson [18]). The present collision provides information for the 
continuation of the calculation and does not signal the approach of a time or position at 
which the boundary-layer equations have become inadequate. 

2. The geometry and the equations of motion 

Let us fix the class of problems we shall consider here by defining the rigid surfaces to be 
z -- 0, x >/0 and y = + f ( x ) ,  x >1 0, z > 0, where f ( x )  is a given function of x which 
vanishes at x = 0. In Fig. 1 we give a sketch of the configuration in the x, y-plane. The 
plane z = 0 represents the fuselage and the cylinder the wing. The oncoming flow is 
inviscid for x < 0 and at x = 0 two boundary layers are set up, one on the cylinder 
y = i f ( x ) ,  z > 0 and one on the plane z -- 0 but outside the cylinder. Intuitively the first 
of these appears to be a straightforward two-dimensional boundary layer of the classical 
kind but we shall see that this concept must be modified due to a mass flux from the 
second. We focus our interest in this chapter on the second boundary layer, namely the 
boundary layer which is set up on the plane z = 0. 

A discussion of three-dimensional boundary-layer effects may be found in Rosenhead 
[14]. There it is shown that if the inviscid external streamlines have nonzero lateral 
curvature the streamlines in the boundary layer cannot be parallel to them. This is the 
situation that prevails here; if ue, re, w e are the components of the external velocity then 
on the cylinder these take the values 

w e =  O, v e = + _ f ' ( x ) u e ,  when y = + _ f ( x ) .  (2.1') 

Thus the cross-section of the cylinder is a streamline of the external flow and, except in 
the particular case when it is a wedge and has zero curvature, it cannot also be a 
streamline of the boundary layer on the plane z = 0. This follows either from the 
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Figure  1. The  geomet ry  of the in te rac t ion  region. - -  ex ternal  s t reaml ine  . . . . . .  bounda ry - l aye r  s t reamline.  
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argument of Rosenhead or, equivalently and directly, by noting that if the cylinder were 
also a boundary-layer streamline we should have 

~P = plcu 2, (2.2) 
~n 

at points in the boundary  layer just outside the cylinder. Here p is the pressure, p the 
density, n the outward drawn normal to the cylinder, x the curvature of the cylinder and 
u~ the component  of velocity parallel to the cylinder. Now the left-hand side of (2.2), and 
x, are independent of z, as p is given by the main stream as z --+ 0, whereas u s itself is a 
non-constant  function of z since it vanishes at z --- 0. It  follows therefore that the relation 
(2.2) cannot be satisfied unless r = 0 in which case the cylinder reduces to a wedge. The 
most  likely resolution of this contradiction is either that the oncoming boundary layer on 
the plane z = 0 separates before the cylinder is reached or that the component  of velocity 
normal  to the cylinder is nonzero at the cylinder. This second situation, which we shall 
demonstrate is the relevant one, we term a collision phenomenon. 

The first example we shall choose has f ( x ) =  + x  tan a where 0 < a < ~r/2 and so 
x = 0, and the argument based on (2.2) does not apply. Hence we might expect that the 
question of a collision does not arise and the purpose of this study is to show that 
separation does not occur either. In the second example f ( x )  = ~x(l  - x )  where 1 is a 
constant and x is assumed to be small. Now the curvature is ~ ( =  2 / l )  and we show that 
here too there is no separation but that collision clearly occurs at the cylinder. The 
boundary-layer equations for both these problems are the same, namely 

au au Ou au~ au~ a2u 
+ + = Ue--ffx + Oe- y + ~Z2 ' 

a v  Ov + W ~ z z  a v  e Ov e a2o 

u + = u ,  + + O z--7 , 

au av aw 

(2.3) 

where v is the kinematic viscosity, and the boundary conditions are that 

u = v = w = O  a t z = 0 ,  x > 0 ,  l Y l > f ( x ) ,  
U "+ U e , O --'+ V e as z---+ oo, 

(2.4) 

and the boundary layer has zero thickness at x = 0 as the onset of the flow in both cases 
is of Blasius type. 

3. The wedge 

In practice, the wedge-shape y = + x tan a, x >/0, is relevant to the front portion of a 
finite sharp-nosed cylinder. The structure of the flow in this neighbourhood is determined 
solely by the angle a through which the flow has to turn. I t  is convenient to introduce 
cylindrical coordinates (r ,  0, z) where r cos 0 = x, r sin 0 = y. With velocity components 
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(Ur, UO, Uz) in this system of coordinates the boundary-layer equations (2.3) take the 
form 

OUr U 0 OUr aU r a2u r aUre UOe aUre 1 
. . . .  + u , r - ~ ; - + -  + 7 (u~- U~e), u " --~-r + r ~ + u ~ --ffz P O z z r " ~  

au o u a auo auo aZuo auo~ Uo~ auo~ 1 
u , - ~ r  + - -  - -  + = - -  + u,e--ff-r + ( u~uo -- u , e u o e ) ,  r a6 uz--~- z v az 2 r aO r 

1 a 1 au e au z 
r O'r (rut)  + r - a O  + -~z - -  O, (3.1) 

where the corresponding components (urn, uo~ ) of the inviscid flow may be written as 

Ur~ = --r n COS q, UOe = --r n sin q, (3.2) 

with (n + 1)(~r - a) = ~r, and q = (n + 1)(~r - 0), and the boundary conditions are 

u,--u0--u~=O atz=O,  u , ~ u ~ e ,  u o-ouoe asz--,oo. (3.3) 

In the boundary layer we write 

¢= ( rn -1 /v  cos 0)1/2z, n - 1 < O, 

u,-- - rnU(~ ,  0) cos q, u e = - rnV( ~ ,  O) sin q, 

U z = (p rn -1 /COS  0) 1/2 

× [ 14z((, O) + (1 /2)(n  - 1)(U cos 0 cos q + (1/2)~I  ~ sin 0 sin q],  (3.4) 

whereupon the governing equations (3.1) reduce to 

a~O ~aO 
a~ "~ a~ 

cos 0[-aO ] 
- - -  V~-~sin q cos q + (n + 1)UI~ sin2q + n U  2 cos2q - -  ~ ,~2  sin2q _ n , 

cos q 

a~ 2 a--ff = - c o s  o v ~ s m  q - (n + 1)( - UlT) cos q , 

[ ] aff"+½17sinOsinq-~ -- - c o s O c o s q  ( n + l ) P - ½ ( n + 3 ) O - - ~ t a n q  , (3.5) 

and the boundary conditions (3.3) become 

O = V = f f ' = O  a t ( = O ,  0 - - .1 ,  I ~ l  a s ( ~ o o .  (3.6) 



Table 1. Reduced skin friction for three-dimensional boundary-layer flow upstream of a wedge 
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a = 30 ° a = 45 ° ot = 60 ° 

90 0.324 0.324 " 0.309 0.309 

80 0.387 0.321 0.395 0.302 

70 0.420 0.315 0.456 0.290 

60 0.446 0.308 0.518 0.272 

50 0.478 0.298 0.615 0.248 

45 0.501 0.291 0.685 0.249 

40 0.532 0.284 

30 0.634 0.28 

0.279 0.279 

0.398 0.262 

0.510 0.231 

0.675 0.197 

Initially, at O = ¢r/2 where q = ~r2//2(~ - or), the flow field is essentially of Blasius type, 
and the solution is extended numerically to smaller values of 0, i.e. larger values of q, by 
the standard Keller-box method, fully documented in Cebeci and Bradshaw [23]. The step 
lengths chosen were 0.15 in ( and 5 ° in 0; the outer edge of the boundary was taken at 

= 9. No problems were experienced in the computation, the value of V being clearly 
positive for all ( >  0 in the range of 0 of interest, and, as 0 ~ a, it remained finite. Hence 
we see from (3.4) that the component of velocity in the boundary layer, uo, normal to the 
wedge, tends to zero uniformly as O ~ a and (n + 1)(rr - O) ~ ~r. There is no separation 
ahead of the wedge and no collision of the plate boundary layer with the wedge, and the 
way is open therefore to study the interaction between the two boundary layers, one on 
the cylinder and one on the plane z = 0, in a similar manner to that for the comer  region 
of Rubin as discussed in the introduction. 

To illustrate the results of the computation of the plate boundary layer undertaken 
here we display in Table I the components of the reduced skin friction 

SB = - -  7~B = - - ~  , ( 3 . 7 )  

as functions of O for a = 30 °, 45 °, 60 ° 
The only other feature of interest is that very near 0 = a a slight overshoot, of a 

fraction of a percentage, develops in the profile of U. This is possibly related to the slight 
increase of the 6 component of skin friction as the wedge is attained also evident from 
Table 1. 

4.  T h e  c i rcu lar  c y l i n d e r  

If the rigid surface standing on the plane y = 0 is the circular cylinder y 2  = x ( l  - x), with 
centre at ( l / '2 ,  0, 0) and radius l / 2 ,  the inviscid velocity distribution above the plane 
z = 0 is given by 

U e = O ~ / O X ,  O e = O e p / O y ,  W e = 0 w h e r e  

, = V (x - ½t) 1 + ( x  - ½t) " 
(4 .1 )  
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Near the forward stagnation point x = y  = 0 and in the region x >t 0, y2 >/x(l - x), 

ue= 4Uoo(ay 2 - lx)/l 2 + O(y4),  v e -- 4Uo~y/l+ O(y3);  (4.2) 

we must bear in mind that y2 = O(lx) in this region. A solution of the boundary-layer 
equations (2.3) may be found by writing 

t= 2~fft ~ Uoo Ix, y -7/-' ~ = ~  r = 7 '  
u = 4y2UooU(t, ~, r) ,  v = 4YUooV(t, ~, Y), 

2 ~-ff_ff.~ [W(t ,  ~, Y) + (1/2)tU-t~V]. w=~- 

(4.3) 

The equations satisfied by U, V, W are free of singularities near Y = 0 and are given by 

aW 2aV 3U .yaV 
at +½U=2~" - - ~ - - ~ - - ~ - ¢  ~--~, 

a2U 3U [aU 2 V 3 U ] - ~ 2 - 3 ~ ,  at 2 W-~=~ - ~ ( U -  ~ )+2UV+ YV-ff-~ 

a~v av [av av] 
at 2 w-~  =~ T ( ( u -  2w) + v2 + rv~-f - L  

(4.4) 

A formal solution to these equations may be found by expanding U, V, W in integer 
powers of y2. The leading terms (U 0, V o, W0) satisfy 

aWo ~OVo aVo 
a--~ - +½U°=2~" --~- - ~  3~ ' 

a2Uo 
at  2 

a2Vo 

at  2 

3U o I" OU o U, 2UoVo] _ ~,2 _ - - -  Wo-- ~ -  -- ~'[--~--( o -  2~'Vo) + 3~', 

OVa ravo u +vg]-~, - - -  Wo-ff = ~[-ff( o- 2~Vo) 

(4.5) 

with boundary conditions 

Uo=Vo=Wo a t t = 0  a n d U o ~ 3 - ~ ' , V o ~ l  a s t ~ o o .  (4.6) 

The solution begins at ~ = 0, i.e. the leading edge x = 0 of the plate, where the flow field 
is again of Blasius form, and continues until ~ = 1 which coincides with the boundary of 
the circular cylinder when Y<< 1. More generally this boundary is ~= 1 + ~2y2. The 
numerical integration is again performed using the Keller-box method with step sizes of 
0.08 in t, and varying from 0.1 in ~ for 0 ~< ~ ~< 0.8 down to 0.01 near ~ = 1 with the outer 
boundary taken at t = 4.88. No difficulties were encountered in continuing the integra- 
tion as far as ~ = 1; in particular there was no sign of separation. In Table 2 we display 
the components of the reduced skin friction for the case of the circular cylinder and there 
is clearly no indication of their being zero or singular anywhere in 0 ~< ~ ~< 1. 
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Table 2. Reduced skin friction for three-dimensional boundary-layer flow upstream of a circular cylinder 

~" sn TB 

0.0 1.727 0.576 
0.1 1.879 0.645 
0.2 2.038 0.713 
0.3 2.198 0.779 
0.4 2.366 0.845 
0.5 2.537 0.910 
0.6 2.718 0.975 
0.7 2.903 1.039 
0.8 3.099 1.103 
0.9 3.303 1.168 
1.0 3.517 1.233 

1.0 ~=o 

>o 
oJ 

I 0 

0.5- ~=0.5 

~=0.8 

(=0.9 

~=1.o 

I ! 
2 4 

Figure 2. Profiles of Uo -2II0 for various values of ~. 
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The properties of U 0 - 2 V  o are of principal interest since the component of velocity 
normal to the cylinder is given by 4y2uoo[2V - U+2~y2u], and in Fig. 2 we plot 
profiles of U o - 2 V  o for various values of ~. It is clear that, as expected, this velocity 
component is not zero for all ~ > 0 at the circular cylinder though it duly vanishes at the 
plane z = 0 and in the external stream. Hence, according to our theory, the fluid in the 
boundary layer on the plane z = 0 moves towards the circular cylinder and collides with 
it. A sketch of a typical streamline in this boundary layer is shown in Fig. 1. In Table 2 
we display the components of the reduced skin friction 

OU OV 
S s = - ~ ' ( ~ _ o '  TB='-@(~_ o' (4.7) 

for a circular cylinder. As in the case of a wedge, as ~" ---> 1 overshoot of the U-component 
of velocity occurs here also, rather more pronounced this time. 

5. Discussion of the collision process 

The numerical studies of these two flows indicate very strongly that for general shapes 
f (x)  with f"(x)  @ 0 the boundary layer on the plane z = 0 will bring fluid to the cylinder 
with a nonzero normal velocity so that it must in a sense collide with the cylinder. 
Separation beforehand does not appear to be an option and while collision does not occur 
on a wedge our arguments show that this is because its curvature is zero. As soon as some 
curvature develops the collision is inevitable. For example if the cylinder is a double arc, 

y =  + x  tan a ( 1 -  (x / l ) ) ,  (5.1) 

then the solution in Section 3 is the leading term in an expansion in ascending powers of 
x and there is little doubt that the higher terms in the series will contribute to a collision. 
It is possible that separation will also occur eventually, perhaps near the rear of the 
cylinder, but this remains to be established. 

Even when studied in the most  naive way possible, the mechanics of the collision 
process are quite different from those of the corner flows reviewed by Zamir [9] and 
discussed here in the introduction. In Zamir's problem the cross-flow velocities are 
O(U~ R-1/2),  while the streamwise component of velocity is O(U~ ). In addition, the core 
region extends a distance O(IR -1/2) from the corner so that a/ay, a/Oz >> a/ax. As a 
result there is a subtle interplay between all three components of velocity, viscous forces 
cannot be neglected, and a vital part is played by the streamwise vorticity. 

In the present instance the cross-flow is O(Uoo ) and if we assume that the collision 
region extends no more than a distance O(lR -1/2) from the corner, the component of 
velocity along the comer does not play a significant r61e in controlling the turning of the 
fluid from a motion parallel to the z-plane to a motion parallel to the cylinder. Let us 
define a new system of coordinates (s, n, ~), where s denotes distance along the cylinder 
parallel to the z-plane, n denotes distance along the outward drawn normal to the 
cylinder and ~, as before, measures distance normal to the plane z = O. Let (U, V, W) be 
the corresponding components of velocity in the collision zone and set ~/= nR~/2/l. Then 
boundary-layer theory of the kind we have considered hitherto in this paper would tell us 
that if ~ is finite 

U--, s), W= (5.2) 
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...> 

.--> 

.-> 

...> 

'--~ ¢~ given 

"> %-0  

-> 

--> 

¢(= 0 

on n =0 

n ¢n=O on ~ = 0 
Figure 3. Illustration of the boundary conditions for 
equations (5.4). 

inviscid ~ { flow 

boundary ~ ~ 1  ~ 
layer O 

rl plane z = 0 
Figure 4. Cross-sectional flow fields at the corner. 

as ~/---, oo, where U, 1,7, both positive, are calculated from the values of U and V evaluated 
at the boundary of the circular cylinder ~ = 1 (Y<< 1) and thus fixed by this theory. For 
discussion of the collision zone, illustrated here for the case of a circular cylinder, we 
substitute r = a + h l R  -1/2,  z = l~R -1/2, 0 = s / a ,  where a = 1/2 is the radius of the 
cylinder, and u r -- V, u a = if, u s = W into the full Navier-Stokes equations in polar form 
and let v --* 0 ( -  R m oo) obtaining the inviscid equations 

1 
0n +--~-= o, p 0~/ 

- - 0 W  1 Off g ~ +  W-@- = 0 .  =o, - 0 g  
(5.3) 

Equations (5.3) also apply for the comer region of any cylindrical cross-section provided 
that s measures distance around the circumference and 71 that along the normal with 
corresponding velocity components U, V. Thus the secondary motion can be computed 
independently of the primary motion and in effect their r61es are reversed. Further, the 
secondary motion is controlled by inertia forces only and has already been studied by 
Stewartson [24] in a related problem. A sketch of the cross-sectional flow-field is shown in 
Fig. 4. 

Equations (5.3) have the formal solution 

~= o,/o~, ~ =  -o~/o~,  °2---~-'/' + °2'/' 0~ 2 -~-~=H(~k,  s ) ,  U = G ( * ,  s ) ,  (5.4) 

with boundary conditions on 

04 u~P, 0~ 

0--~-~=0 a t T / = 0 ,  0--~-~=0 a t e = 0 .  
0~ 0n 

(5.5) 
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Here H, G are functions of ~k, and s appears only as a parameter. These functions can be 
fixed by the conditions (5.2) as ~k becomes independent of 7/ as 7 /~  oo since (5.2) 
requires W to be small. Conditions (5.5) are sufficient to determine ~ in (5.4). Thus, just 
as + is independent of ~ as ~ ~ oo so it is independent of ~ as ~ ---, oo because of the 
symmetry in the boundary conditions, as shown in Fig. 3. We may refer, therefore, that 
the r61es of ~ and 71 are reversed and the r61es of V and - 1~ are interchanged. Indeed, it 
is clear from Fig. 3 that the flow field as ~ ~ oe is the same as it is as 7 /~  oo, but turned 
through a right angle. Hence, as ~ ~ oo, 

/7---, U~U(~/, s) ,  V ~  0, W ~  Uool~(~, s).  (5.6) 

We thus come to the conclusion that the details of the mechanics of turning the corner are 
of local interest only and the boundary layer which collided with the cylinder has the 
same velocity distribution as the boundary layer which begins to evolve on the surface of 
the cylinder, apart from the interchange of ~ and 7/and of V and - W. 

6. Discussion 

The present investigation has shown that the common practice of initiating the 
boundary-layer flow on a wing by simply assuming a zero velocity profile at root chord is 
not in general correct. In particular, if the fuselage does not extend ahead of the wing the 
fuselage boundary layer plays an important r61e in determining the velocity profiles on 
the wing. Here we considered a fuselage that is plane with a cylindrical wing normal to it, 
and have computed the three-dimensional boundary layer on the plane. Unless the wing 
cross-section has zero curvature the component of velocity in this boundary layer has a 
velocity component normal to the wing that does not vanish as the wing is attained. Thus 
a turning process is inevitable at the intersection and a simple theory suggests that the 
important effect is to turn the fluid velocity through a right angle in an inviscid manner 
without any change in profile. The resulting velocity profile may then be used as an initial 
condition to compute the boundary layer on the cylinder. 

If the fuselage extends ahead of the wing it is expected that the fuselage boundary 
layer will separate upstream of the wing. In such a situation the collision process 
described here is of secondary importance and the well-known horse-shoe vortex will 
probably result, though the separation mechanism of Smith and Duck [10] cannot 
altogether be ruled out. If, however, the region of separation is designed so as to eliminate 
the horse-shoe vortex then the phenomenon of collision as described here may be 
significant. 
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